This course focuses on reviewing concepts of data science, where participants will learn the stages of a data science project. Topics include using automated tools to prepare data for analysis, build models, evaluate models, and deploy models. To learn about these data science concepts and topics, participants will use IBM SPSS Modeler as a tool.

Audience: • Business Analysts • Data Scientists • Participants who want to get started with data science

Brand: DS&BA - SPSS; Windows

Event Number: 0A018G

Available Languages: English (US),English (UK),French (Canada),German (Germany),Russian (Russia),Japanese (Japan),Chinese (Simplified),Italian (Italy),Polish (Poland),Portuguese (Brazil),French (France),Spanish (Latin America),Spanish (Spain),Portuguese (Portugal),Thai (Thailand),Dutch (The Netherlands),Turkish (Turkey),Romanian (Romania),Czech (Czech Republic),Latvian (Latvia),Lithuanian (Lithuania),Norwegian (Bokml),Swedish (Sweden),Danish (Denmark),Hebrew (Israel),Arabic,Greek (Greece),Korean (Korea),Bulgarian (B

Subjects: Technical


Please refer to course overview

Learn about;
SPSS Modeler;
SPSS Modeler 18.1.0

Course Detail:

1:  Introduction to data science and IBM SPSS Modeler
    •  Explain the stages in a data-science project, using the CRISP-DM methodology
    •  Create IBM SPSS Modeler streams
    •  Build and apply a machine learning model
2:  Setting measurement levels
    •  Explain the concept of "field measurement level"
    •  Explain the consequences of incorrect measurement levels
    •  Modify a field's measurement level
3:  Exploring the data
    •  Audit the data
    •  Check for invalid values
    •  Take action for invalid values
    •  Impute missing values
    •  Replace outliers and extremes
4:  Using automated data preparation
    •  Automatically exclude low quality fields
    •  Automatically replace missing values
    •  Automatically replace outliers and extremes
5:  Partitioning the data
    •  Explain the rationale for partitioning the data
    •  Partition the data into a training set and testing set
6:  Selecting predictors
    •  Automatically select important predictors (features) to predict a target
    •  Explain the limitations of automatically selecting features
7:  Using automated modeling
    •  Find the best model for categorical targets
    •  Find the best model for continuous targets

Explain what an ensemble model is
8:  Evaluating models
    •  Evaluate models for categorical targets
    •  Evaluate models for continuous targets
9:  Deploying models
    •  List two ways to deploy models
    •  Export scored data

Pre-Requisite Text:

• It is recommended that you have an understanding of your business data

GTR Start Date / End Date Class ID Location Language Price Enroll
Start Date / End Date:
08/23/2019 10:00 EST -
08/23/2019 18:00 EST
763984 Location: NA Virtual - ET Language: English (US) Price: $820.00 USD Enroll:

To add to cart,
Log in here

Start Date / End Date:
11/15/2019 10:00 EST -
11/15/2019 18:00 EST
763983 Location: NA Virtual - ET Language: English (US) Price: $820.00 USD Enroll:

To add to cart,
Log in here